Inequalities for C-S seminorms and Lieb functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems

This paper is devoted to inequalities of Lieb-Thirring type. Let V be a nonnegative potential such that the corresponding Schrödinger operator has an unbounded sequence of eigenvalues (λi(V ))i∈N∗ . We prove that there exists a positive constant C(γ), such that, if γ > d/2, then

متن کامل

On general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities

These classical inequalities allow one to estimate the number of negative eigenvalues and the sums Sγ = ∑ |λi| for a wide class of Schrödinger operators. We provide a detailed proof of these inequalities for operators on functions in metric spaces using the classical Lieb approach based on the Kac-Feynman formula. The main goal of the paper is a new set of examples which include perturbations o...

متن کامل

Lieb-Thirring Inequalities for Jacobi Matrices

For a Jacobi matrix J on l(Z+) with Ju(n) = an−1u(n− 1) + bnu(n) + anu(n+ 1), we prove that ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1999

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(98)10245-8